Monitoring Anesthesia: Making Sense of the Beeps

Lindsey Culp Snyder, DVM, MS, DACVA

University of Wisconsin

Madison, WI

- 1. Why do we monitor anesthesia?
 - a. Patient's normal physiology is altered by anesthetic drugs
 - b. Compensatory mechanisms are diminished by anesthetics
 - c. Concurrent diseases will alter normal physiology
 - d. Monitoring improved the patient's success by allowing for informed, timely responses to changes in status
 - i. Proactive decisions versus reactive decisions
 - ii. Provides a good reference for additional anesthetic procedures
 - What do we need to know before we can monitor properly?
 - a. Pharmacology of anesthetic drugs
 - b. Pharmacology of current medications
 - c. Normal physiology
 - d. ASA status
 - e. Anesthetic record
 - f. Monitors
 - i. What information they provide
 - ii. What information we can interpret from their use
- 3. How do we develop a monitoring plan?
 - a. Develop a plan based on body systems
 - b. Considerations of health
 - i. Current health status
 - ii. Concurrent diseases
 - c. Procedure to be done
 - d. Available monitoring devices
 - e. Plan to monitor more than one system and more than one variable per system
- 4. Methods

2.

- a. Indirect/noninvasive
 - i. Readily apparent variables
 - ii. Noninvasive testing
 - iii. Easily attainable, no advanced skills needed, easily reproducible
 - iv. Minimal secondary complications
 - v. Limited amount of data to be collected
- b. Direct/invasive
 - i. Placing instruments inside the body
 - ii. Increased data to be obtained
 - iii. Less error in data that is collected
 - iv. Secondary complications
 - v. Advanced knowledge and skill needed
- 5. Central nervous system
 - a. Anesthesia requires CNS depression
 - b. Movement on the table
 - c. Diligent monitoring helps maintain a stable plane of anesthesia
 - d. Monitor reflex activity
 - i. Eye signs (palpebral, comeal, pupil location)
 - ii. Pedal reflexes
 - e. Skeletal muscle relaxation
 - f. EEG/BIS
 - g. End-tidal anesthetic gas concentration
 - i. MAC

6. Respiratory system

- a. Readily available data with obsevation
 - i. Rate (Stethoscope, breathing frequency monitors, pulse oximeter, etc.)
 - ii. Pattern
 - iii. Tidal volume changes
- b. Pulse oximeter
 - i. Pulse rate
 - ii. Oxygen saturation (SpO2)
 - iii. Does not measure adequacy of ventilation !!!
 - iv. Needs a pulsatile signal for an accurate reading, therefore errors can occur with hypothermia, hypotension, changes in vascular resistance
 - v. Needs an understanding of the oxyhemoglobin dissociation curve for proper interpretation
- c. End-tidal carbon dioxide monitor (CO2)
 - i. Most valuable monitor for assessing the adequacy of ventilation !!!
 - ii. Capnometer vs. capnograph
 - iii. Estimation of the alveolar CO2 concentration
 - iv. Must use when controlling ventilation
 - v. Normal value is 40 mmHg
- d. Gas monitors
- e. Spirometry
 - vi. Quantitate the tidal volume
- f. Hemoglobin concentrations
- g. Blood gas analysis
- 7. Cardiovascular system
 - a. Heart rate
 - i. Direst palpation
 - ii. Ultrasonic Doppler
 - 1. Piezoelectric crystal
 - 2. Amplifies the sound of blood flow under the crystal
 - 3. Can be used for blood pressure as well
 - iii. Pulse oximeter
 - b. Peripheral perfusion
 - i. Function of arterial blood pressure and local vasomotor tone
 - ii. Normal capillary refill time of 1-2 seconds
 - iii. Urine production can be used
 - c. Central venous pressure (CVP)
 - i. Assessing patient's blood volume
 - ii. Affected by blood volume, vascular tone, cardiac contractility, heart rate, an non-cardiac factors (body position)
 - d. BLOOD PRESSURE!
 - i. Most important monitoring modality for assessment of the cardiovascular system
 - ii. Can be made either directly or, more commonly, indirectly
 - iii. Oscillometric monitors
 - 1. Slowly releases air from the cuff (placed over a peripheral artery) until arterial pulsations are detected by the monitor and are then displayed by the monitor
 - 2. Display the systolic, diastolic and mean blood pressure
 - 3. Inaccurate in smaller patients and at low blood pressures, but should accurately reflect trends in the BP
 - 4. Heart rate as well

- iv. Ultrasonic Doppler
 - 1. Doppler crystal placed over a peripheral artery
 - 2. Appropriately sized cuff placed proximal to the crystal
 - 3. With the use of a sphygmomanometer air is slowly released from the cuff until a pulse is heard on the Doppler
 - 4. The pulse corresponds most closely to the systolic blood pressure in dogs and the mean arterial blood pressure in cats
 - 5. Doppler apparatus can be inaccurate at lower blood pressures
- v. Direct arterial BP
- vi. Arterial catheter.
- vii. Accurate quantitative arterial BP value and a qualitative representation of the arterial pulse waveform
- viii. Systolic, diastolic, and mean arterial BP's easily measured and displayed using this method.
- ix. Very accurate